

Blue Book on Programming Languages in China 2024

1

Copyright

Copyright (c) 2024 Programming Language Open Community (PLOC) & Hubei Software Industry

Association (HBSIA)

Blue Book on Programming Languages in China is licensed under Mulan PSL v2.

You can use this software according to the terms and conditions of the Mulan PSL v2.

You may obtain a copy of Mulan PSL v2 at:

 http://license.coscl.org.cn/MulanPSL2

THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KI

ND,

EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,

MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.

See the Mulan PSL v2 for more details.

⚫ Special Advisers: Yuning Liang, Jianzhong Li

⚫ Curators: Shushan Chai, Ernan Ding, Zhiyong Li, Hailong Yang

⚫ Editors: Chaochen Chen, Dengchun Li, Haokun Li, Sen Wu, Fang Xu, Hailing Yang,

Puming Zhao, Zirun Zhu

⚫ Supporting: GitCode

⚫ Sponsor: Wuhan WaYuYan Technology Co., Ltd.

Blue Book on Programming Languages in China 2024

2

"The Blue Book plays an important part of programming technology evolution in terms of

communication among all the enthusiasts, for example between the application developers who

using the programming languages and those engineers who making the programming languages. As

time goes by, it’s a good approach to collect them and debate among them along their strengths and

weaknesses which changes against time. For example, in the beginning of computer era, computer

scientists are rare who usually know a lot from the fundamentals to application, at that time

programming languages were designed for experts. Since Internet era begins, programming

languages evolved from a complex version to a naive one like JavaScript which hugely popular for

novice programmers who making web applications instead of complex scientific applications. Now

AI age starts, we can foresee new programming languages might become for AI models instead of

for human! The value of this Blue Book is obvious and becomes more relevant in the future

evolution in AI computing. Keep up the valuable work and all the best. "

- Yuning Liang

"Programming languages are the intersection between humans and computers, playing an

indispensable role in the entire computing industry. Since the creation of the first advanced

programming language, FORTRAN, in 1957, nearly seventy years have passed. During this term,

the computer industry has given birth to hundreds of programming languages, with over twenty still

in widespread use today. The evolution of programming languages bears a remarkable resemblance

to the history of thousands of human languages.

Programming languages are also catalysts for technology revolution. With each new generation

of technology revolution, corresponding programming languages emerge or flourish. For instance,

C++ for system software, JavaScript for the Web, Java/Go for cloud-native development, and

Python for machine learning, among others.

In the era of artificial intelligence driven by large language models, the code auto-generation

technology brought about by these models is pioneering a new development paradigm and opening

up unprecedented possibilities for the evolution of programming languages.

With the tireless efforts of numerous experts, scholars, and engineers, programming languages

from China are emerging and are becoming a vibrant part of the grand vision for the development

of domestic software. The compilation of the Blue Book on Programming Languages in China is

highly significant for promoting communication and development within this field. Let us join

hands to support the development of programming languages in China!"

- Jianzhong Li

Blue Book on Programming Languages in China 2024

3

Contents

Copyright .. 1

Charter 1 Preface ... 4

1.1 Background .. 4

1.2 Our Purpose .. 5

1.3 Inclusion Criteria .. 5

1.4 How to submit .. 6

1.5 Project classification ... 7

Charter 2 Summary of 2024 .. 8

Charter 3 Project List .. 12

3.1 Auto Lang .. 13

3.2 Aya.. 16

3.3 Calcit .. 17

3.4 CovScript .. 19

3.5 DeepLang .. 23

3.6 GödelScript ... 26

3.7 HVML ... 29

3.8 Goldfish Scheme ... 32

3.9 KCL ... 33

3.10 Koral ... 35

3.11 Losu .. 37

3.12 MoonBit .. 40

3.13 Nasal-Interpreter .. 43

3.14 NASL .. 45

3.15 PikaPython .. 49

3.16 Qing .. 53

3.17 RoarLang .. 56

3.18 TuLang ... 59

3.19 Wa ... 62

3.20 XLang .. 65

Charter 4 About us .. 70

Appendix .. 72

Blue Book on Programming Languages in China 2024

4

Charter 1 Preface

1.1 Background

Programming language can be considered the mother machine of the software industry, while

compiler technology represents the root technology of the IT-industry. A variety of programming

languages are employed in the development of operating systems, database management systems,

network services, industrial control equipment, applications, and other modern industries and

service areas. In particular, the continuous expansion of the innovation space of the information

industry, the continuous increase of system complexity, and the continuous reduction of

development costs have been directly benefited from the continuous emergence of programming

languages and compiler technologies. Currently, there is a notable absence of widely used

programming languages in China, which is incongruous with the country's status as a world-class

industrial and scientific power.

The Ministry of Industry and Information Technology published the '14th Five-Year Plan'

software and information technology services development plan, which states that there should be

'strengthened supply of basic components' and 'accelerated breakthrough in programming language

development frameworks'. Chapter 4 of the 'China Software Root Technology Development White

Paper (Basic Software Book)', published by the China Software Industry Association (CSIA), is

dedicated to summarizing the importance and development trends of programming languages and

compilers. The aforementioned documents demonstrate that the advancement of programming

language-related industries has been the subject of governmental policy initiatives. Following years

of development and accumulation in China, information technology has emerged as a significant

economic sector, employing nearly ten million individuals. The necessity for programming

languages as a fundamental tool has reached a considerable level of demand. Additionally, the rapid

growth observed in emerging domains, such as large language models and domestically

manufactured chips, has introduced a multitude of novel requirements for programming languages.

A review of historical data reveals that, in contrast to other industries, the success stories of

programming languages, the foundation of the information industry, are characterized by a high

degree of serendipity. The current landscape of widely used programming languages and

development tools encompasses both commercial projects driven by large enterprises and

opensource projects initiated by individuals. These can be classified as either KPI-driven

commercial products or interest-driven products. Additionally, the domestic software industry is

witnessing a trend of highly fragmented projects, with a considerable number of emerging

programming language projects of diverse types and for various domains initiated by enterprises

and opensource communities.

Blue Book on Programming Languages in China 2024

5

1.2 Our Purpose

Based on the background above, PLOC initiated the compilation and publication of the "Blue

Book on Programming Languages in China" (hereinafter referred to as the Blue Book), striving to

comprehensively collect active programming language projects that have certain usability in China,

and provide the industry with an objective panoramic view of domestic languages. We hope that the

Blue Book will reflect the overall situation of domestic programming language projects as

objectively as possible, provide a global perspective for the industry, assist the industry's demand

side in finding suitable languages, and help programming language enthusiasts find opensource

projects to contribute to. The Blue Book will be released regularly to track the latest developments

in the industry.

"Practitioners supporting each other" is the core concept of PLOC, and the Blue Book inherits

this feature. The projects included in this book are all self-reported, and the editor will review the

project qualifications; the project content (text, pictures, etc.) is provided by the project author, and

the editor only adjusts the page layout. The person who knows the characteristics of the language

best is the language author. We hope that through self-declaration, the characteristics of each project

can be presented in the form that best suits the author's personality, in order to attract like-minded

enthusiasts, contributors, and potential users.

In order to keep the information up to date, the Blue Book will continue to be updated and

released. "Chinese Programming Language Blue Book 2024" is the second edition of the Blue Book.

Based on the experience of compiling the 2023 edition and feedback from all parties, the 2024

edition has the following updates:

⚫ Added English version. The Chinese and English versions will be published separately

with consistent content;

⚫ A list of recommended contents has been added to the project profile section of the

application materials to facilitate the standardization of project presentation.

1.3 Inclusion Criteria

Projects that meet the following conditions can be submitted through PR in the Blue Book

Workspace Repository:

1. The project is initiated and maintained by an enterprise, community or individual in China;

2. The project meets the project classification standards (see Section 1.5);

3. The project is basically available and can be independently verified by the editorial board;

4. It is open to the public;

Blue Book on Programming Languages in China 2024

6

5. The project is active.

The editorial board of Blue Book has the final right of interpretation of the inclusion

criteria.

1.4 How to submit

All projects included in the Blue Book are self-reported. Projects that meet the inclusion criteria

can be submitted at the following address:

 https://gitcode.com/ploc-org/CNPL/tree/master/projects

Add a directory with the same name as the project in the above directory, and fill in the project

introduction and other information in markdown format. The information should include the

following:

⚫ Project name

⚫ Project icon

⚫ Project homepage

⚫ Project warehouse

⚫ Project classification label

⚫ Project introduction in Chinese and English

⚫ Applicant contact information

The project introduction section is recommended to include the following content, in any

format:

⚫ Target application scenario

⚫ Project features and design concept

⚫ Examples (such as "hello world")

⚫ Project goals etc.

For projects that do not provide an English version of the introduction, the editorial board will

translate it independently and incorporate it into the English version of the Blue Book. Since it is

impossible to guarantee that the translation accurately expresses the content of the project, please

provide a bilingual version with consistent content as much as possible. No more than 4 pictures

can be inserted in both the Chinese and English versions. The picture size is 1920×1080 pixels (20

https://gitcode.com/ploc-org/CNPL/tree/master/projects

Blue Book on Programming Languages in China 2024

7

×11.25 inches, 96ppi), and the picture format can be JPG or PNG. See the application example:

https://gitcode.com/ploc-org/CNPL/tree/master/projects/sample

The Blue Book will use font size 10.5 and vertical A4 layout, with the Chinese and English

versions in separate volumes. The total length of the project information pages for the Chinese

version should not exceed 4 pages, and the English version should not exceed 6 pages. The final

sample layout is available at:

https://gitcode.com/ploc-org/CNPL/tree/master/projects/sample/sample.doc

After you submit your PR, the editorial board will review the project information. During this

period, please keep the project address and website accessible. The editors will contact you to

confirm that the project information is accurate. If you have any questions about how to fill in certain

options, you can also communicate with them at this time. By submitting a project, you are deemed

to have received permission from the project owner and authorise the Programming Languages

Open Community (PLOC) to display the project name, icon and other information in the Blue Book.

1.5 Project classification

Language project classification tags:

⚫ Commercial / Free

⚫ Opensource / Closed source

⚫ General / DSL

⚫ Accepting Community Contribution or not

⚫ Language tags (see Appendix - Language Category List)

⚫ Tool tags (see Appendix - Tool Category list)

⚫ Application areas (see Appendix - Application Area list)

Tool project classification tags:

⚫ Commercial / Free

⚫ Opensource / Closed source

⚫ Accepting Community Contribution or not

⚫ Tool tags (see Appendix - Tool Category list)

⚫ Application areas (see Appendix - Application Area list)

https://gitcode.com/ploc-org/CNPL/tree/master/projects/sample
https://gitcode.com/ploc-org/CNPL/tree/master/projects/sample/sample.doc

Blue Book on Programming Languages in China 2024

8

Charter 2 Summary of 2024

Compared with the 2023 edition, the number of projects included in 2024 edition has increased

from 15 to 20, and the changes are as follows:

⚫ 6 new projects, namely: GödelScript, Goldfish Scheme, MoonBit, Nasal-Interpreter,

PikaPython, XLang;

⚫ 1 project was removed: Yuyan (withdrew by the project owner);

⚫ 2 renamed projects: Z Lang was renamed Auto Lang, K Lang was renamed Koral

From January 1, 2024 to the time of writing, the update status of each project is shown as

follow:

Project Name Revisions Project Name Revisions

Auto Lang 155 Aya 639

Calcit 168 CovScript 14

DeepLang 23 GödelScript 7

HVML 32 Goldfish Scheme 244

KCL 505 Koral 25

Losu 73 MoonBit 1550

Nasal-Interpreter 137 NASL 2609

PikaPython 206 Qing 27

RoarLang 178 TuLang 324

Wa 506 XLang 1256

Since each project follows different rules (such as whether to use Squash, etc.), the

above data only indicates whether the project is active and should not be compared with

each other.

Blue Book on Programming Languages in China 2024

9

In 2024, programming language community activities in China have made great progress,

many activities organized by opensource communities have opened programming language sub-

forums for the first time, including:

⚫ In March 2024, the 11th OS2ATC, programming language sub-forum, with Yongming

Wei (member of CPLOC) as the producer:

Fig. 2-1

⚫ In April 2024, PLOC hold its first meetup in Hangzhou:

Fig. 2-2

Blue Book on Programming Languages in China 2024

10

⚫ In October 2024, PLOC participated in the G-Star Carnival and won the "GitCode Top

Ten Opensource Communities of the Year" award:

Fig. 2-3

⚫ Several CPLOC member projects were included in the "G-Star Landscape":

Fig. 2-4

Blue Book on Programming Languages in China 2024

11

⚫ In November 2024, the COSCon'2024, programming language sub-forum, jointly

produced by KAIYUANSHE and PLOC, with Ernan Ding (Secretary of CPLOC) as the

producer:

Fig. 2-5

This series of activities shows that the importance of programming language as the mother

machine of software industry is increasingly valued by all walks of life. We are sincerely pleased

that PLOC can participate in this process and make its own contribution!

Blue Book on Programming Languages in China 2024

12

Charter 3 Project List

A total of 20 projects are included in the Blue Book, and the names of each project are as

follows (in alphabetical order, regardless of Chinese and English):

⚫ Auto Lang

⚫ Aya

⚫ Calcit

⚫ CovScript

⚫ DeepLang

⚫ GödelScript

⚫ HVML

⚫ Goldfish Scheme

⚫ KCL

⚫ Koral

⚫ Losu

⚫ MoonBit

⚫ Nasal-Interpreter

⚫ NASL

⚫ PikaPython

⚫ Qing

⚫ RoarLang

⚫ TuLang

⚫ Wa

⚫ XLang

Blue Book on Programming Languages in China 2024

13

3.1 Auto Lang

Project Tags Language, Free, Opensource (MIT), General, Accepting Contribution

Language Tags General

Tool Tags Interpreter, Source Code Generation(C, Rust, Python)

Application Areas Industry Application(Automotive, Embedded, Robotics, UI), Computer

Graphic

Homepage https://gitee.com/auto-stack/auto-lang

Repository https://gitee.com/auto-stack/auto-lang

3.1.1 Introduction

The Auto language is a programming language for multiple scenarios. It is implemented based

on Rust. Features including:

⚫ Flexibility. Adapt to multiple ecosystems (C, Rust, Python, Shell, etc.). Auto provides

multiple syntax, language features and standard libraries for different scenarios;

⚫ Static and dynamic typing. Interpretation and static compilation;

⚫ Full Stack. Auto has its own standard library, REPL, builder and UI framework.

The Auto language can be used in the following scenarios:

⚫ AutoUI: As the description language for UI.

https://gitee.com/auto-stack/auto-lang
https://gitee.com/auto-stack/auto-lang

Blue Book on Programming Languages in China 2024

14

Fig. 3.1-1

app {

 left { list(item_list) }

 center {

 tabs {

 tab("service") { service_table() }

 tab("signals") { text("signals") }

 tab("messages") { text("messages") }

 }

 }

 right { text("right pane") }

 bottom { text("bottom pane") }

}

⚫ AutoMan: Manage mixed projects in Auto/C as a configuration language.

project: "hello"

version: "0.1.0"

// Dependencies

dep(log, "0.1.0")

// Libs

lib("mymath") { link: log }

// Executables

exe("hello") { link: mymath }

Blue Book on Programming Languages in China 2024

15

⚫ Translation to C and management of hybrid Auto/C projects using AutoMan tools.

// math.at

pub fn add(a int, b int) int {

 a + b

}

// math.h

#ifndef _MATH_H_

#define _MATH_H_

#include <stdint.h>

int32_t add(int32_t a, int32_t b);

#endif

// math.c

#include <stdint.h>

#include "math.h"

int32_t add(int32_t a, int32_t b) {

 return a + b;

}

⚫ as Shell script for cross-platform scripting functionality.

#!auto

cd ~/logs/20241120

grep "error" *.log | wc -l

⚫ as template for code generation in C/Rust/HTML, as follows:

<table>

$ for i, s in students {

 <tr>

 <td>$i: </td>

 <td>${s.name}</td>

 <td>${s.age}</td>

 </tr>

$ }

</table>

This loop is expanded with data in students filled into each row, and generated into full

HTML code.

⚫ as embedded scripts to assist Rust development. For example, in the upcoming project

AutoEngine, we use Bevy as the underlying 3D graphics engine, and Auto as the

scripting language to manage game logics.

Blue Book on Programming Languages in China 2024

16

3.2 Aya

Project Tags Language, Free, Opensource (MIT), General, Accepting Contribution

Language Tags Functional Language

Tool Tags Interpreter, Just-in-time Compiler

Application Areas General, Mathematics of Computing, Applied Computing (Compiler

Development)

Homepage https://www.aya-prover.org

Repository https://github.com/aya-prover/aya-dev

3.2.1 Introduction

The Aya language is a functional programming language similar to Haskell and Lean4 with

language features such as inductive types, pattern matching, and first-class functions as the main

code organization tools.

Aya has a more powerful type system than Haskell, with support for dependent types and

equality types, and the equality has better properties compared to Lean4. In Aya, two values are

equal is a type, and its instance is the proof witness that these two values are equal. For example,

insertionSort = mergeSort is a valid type, and in Aya it is directly equivalent to the function (x : list)

-> insertionSort(x) = mergeSort(x), and an instance of which needs to take a list, and return a proof

that it is the same after being sorted by either sorting algorithms. Such a proof can be used to prove

some properties about the program while programming.

For a more detailed description of the project's motivation in the Aya team's recruitment post:

https://github.com/lazyparser/weloveinterns/blob/master/bunbun

For academic papers on language features in Aya:

https://www.aya-prover.org/pubs

https://www.aya-prover.org/
https://github.com/aya-prover/aya-dev
https://github.com/lazyparser/weloveinterns/blob/master/bunbun
https://www.aya-prover.org/pubs

Blue Book on Programming Languages in China 2024

17

3.3 Calcit

Project Tags Language, Free, Opensource (MIT), General, Accepting Contribution

Language Tags General (Scripting Language)

Tool Tags Source Code Generation (JavaScript), Interpreter

Application Areas Applied Computing (Web Development)

Homepage https://calcit-lang.org/

Repository https://github.com/calcit-lang/calcit

3.3.1 Introduction

Calcit is a dialect of Clojure, following the core design of immutable data structures, prefix

expressions, and Macros. Implemented in Rust for fast startup and runtime, Calcit can be

interpreted and executed directly, or compiled to JavaScript code for execution.The generated

code is simplified with ES Modules and other modern front-end development habits, which makes

it lighter than the ClojureScript solution, easier to mix and match with JavaScript code, and

reduces debugging costs to a certain extent.Calcit's text forms use the indentation syntax.

Code example one, a simple data transformation, similar to Clojure syntax in the threading

macros:

->

 range 100

 map $ fn (x)

 * x x

 foldl 0 &+

 println

Code example two, using Macro-wrapped front-end Virtual DOM component writing based

on the Calcit eco-definition:

defcomp comp-inspect (tip data style)

 let

 class-name $ if (string? style) style

https://calcit-lang.org/
https://github.com/calcit-lang/calcit

Blue Book on Programming Languages in China 2024

18

 style-map $ if (map? style) style

 pre $ {}

 :class-name $ str-spaced style-data class-name

 :inner-text $ str tip "|: " (grab-info data)

 :style style-map

 :on-click $ fn (e d!)

 if (some? js/window.devtoolsFormatters) (js/console.log data)

 js/console.log $ to-js-data data

In practice, Calcit uses data files to store source code. Support editing expressions directly in

a structured way, with the editor unfolding in the form of data, thus also allowing for rapid partial

definition adjustments and code restructuring, thus increasing the speed of writing and modifying

dynamically typed languages:

Fig. 3.3-1

Calcit is mainly used in web page development scenarios. Implemented some of the features

of the Virtual DOM ecosystem.

Blue Book on Programming Languages in China 2024

19

3.4 CovScript

Project Tags Language, Free, Opensource(Apache2.0),General, Accepting Contribution

Language Tags Imperative Language

Tool Tags Interpreter, Just-in-time Compiler, Runtime Environment

Application Areas General

Homepage https://covscript.org.cn

Repository https://github.com/covscript

3.4.1 Introduction

The Covariant Script programming language, CovScript for short, or 智锐编程语言 for

short in Chinese, originally released in 2017, is a cross-platform, open-source, dynamically-typed,

application-layer general-purpose programming language that is efficient, easy to learn, easy to

use, and reliable, combining the advantages of modern programming languages, and can

efficiently and directly interact with C++ via CNI It is a cross-platform, open source, dynamically

typed application layer general purpose programming language.

CovScript programming language is one of the first batch of independent intellectual

property programming languages put on the market in China, with an independent and perfect tool

chain, including basic Interpreter, debugger, Just-in-time Compiler (JIT Compiler), standard

libraries, extension libraries, documentation and IDE plug-ins, etc., which is not dependent on the

existing programming language Runtime. CovScript's autonomous, independent, complete and

reliable language and attached ecosystem have made CovScript widely praised by customers, and

it has already been deployed in Sichuan University's Information Technology Construction and

Management Office, Sichuan University's Huaxi Big Data Centre, etc., providing 7x24-hour

services in critical systems.

https://covscript.org.cn/
https://github.com/covscript

Blue Book on Programming Languages in China 2024

20

import stdutils

var co = new stdutils.coroutine{[](queue, msg){

 system.out.println(msg)

 foreach i in range(10)

 queue.yield(i)

 if queue.avail()

 system.out.println(queue.get())

 end

 end

 system.out.println("Bye~")

}}

co.join("Hello")

var val = 0

loop

 if co.queue.avail()

 val = co.get()

 system.out.println(val)

 end

until co.resume(val + 1) == stdutils.coroutine_status.finish

The CovScript programming language is a multi-paradigm programming language that is

primarily imperative, supplemented by object-oriented and functional programming, and is easy to

understand and intuitive for beginners, as well as for solving the needs of large-scale projects.

Currently there are several mature development frameworks for CovScript:

⚫ CovAnalysis: a data analysis and processing framework that outperforms Pandas.

⚫ CSDBC: ODBC-based database connectivity, compatible with most major RDBMSs.

⚫ ParserGen: a real-time grammar parser generator based on EBNF-like rules, based on

which CovScript implements a fully bootstrapped.

In addition, CovScript has a comprehensive package manager and a myriad of tools to assist

in the development of most cloud-native applications.

Blue Book on Programming Languages in China 2024

21

Fig. 3.4-1

Although CovScript is a dynamic programming language, its core runtime is written in highly

optimized C++ code, with an execution speed of up to 9 million lines of code per second, and a

context switching speed of 80 GOPS (billions of operations per second) for concurrent processes,

which enables it to efficiently support a wide range of application requirements.

As a programming language designed and developed by Chinese people, CovScript is

practicing Made in China with its own actions. The core ecology of the language has 100%

independent intellectual property rights (registered in the National Copyright Administration of the

People's Republic of China, Registration No. 2020SR0408026; retrieved by Zenodo, DOI No.

10.5281/zenodo.10471188), and the surrounding ecology is 100% Opensource and trustworthy.

Zenodo search, DOI number: 10.5281/zenodo.10471188), the surrounding ecology is 100%

Opensource, credible. Not only that, CovScript also fully supports domestic ecology:

⚫ specially optimized and tested for the Loongson architecture and Chinese operating

systems.

⚫ Each CovScript distribution will have a corresponding Dragoncore version

(UOS@3A4000).

⚫ Compatible with Huawei Kunpeng processor and OpenEuler OS.

⚫ CSDBC Compatible with Huawei OpenGauss Database.

In order to serve as many customers as possible, CovScript is also compatible with stock

systems. In addition to the mainstream version being compatible with Windows 7 64bit, it can also

be customized to be compatible with Windows XP SP2.

Blue Book on Programming Languages in China 2024

22

The years 2017 to 2022 were five years of rapid development that gave CovScript a very mature

ecology comparable to that of mature programming languages. Since 2023, CovScript began

planning its move into modern programming languages and cutting-edge Application Fields, first

by refining the fourth generation of the language standard (CovScript 4, or ECS), and then verifying

the viability of the CovTorchMachine Learning framework. In the future, CovScript will focus on

building the critical infrastructure in the LLMOps process to empower cutting-edge applications.

Blue Book on Programming Languages in China 2024

23

3.5 DeepLang

Project Tags Language, Free, Opensource (MIT), General, Accepting Contribution

Language Tags General

Tool Tags General

Application Areas General

Homepage https://deeplang.org/

Repository https://github.com/deeplang-org/deeplang

3.5.1 Introduction

DeepLang is a programming language designed for resource-constrained scenarios, with static

typed and strongly typed features, a syntax style referring to C-style design. And DeepLang supports

a hybrid programming paradigm of procedural, logical, and functional programming. For Internet

of Things (IoT) applications, DeepLang has various memory safety features, and its design draws

on the safety mechanisms of Rust and selects more appropriate methods of compilation and

execution for resource-constrained scenarios.

DeepLang's tool set consists of a compiler, Deepc, and a virtual machine, DeepVM. Deepc is

implemented by OCaml and has a multi-stage code processing flow: firstly, a grammar tree is

generated by a parser, then a walker is used to traverse the tree to construct a symbol table. The

conversion module translates the tree into ANF IR, and finally converts ANF IR into WASM

bytecode through CodeGen. Currently, Deepc only supports type checker and has no type infer, so

all DeepLang source code must be explicitly annotated with types, otherwise it will be regarded as

a syntax error. DeepVM is implemented by C and supports WASM 1.0, with features such as

bytecode loading, memory management, interpreted execution, and FFI.

Currently, the DeepLang team consists of Masters and PhDs from Jiangnan University,

Imperial College London, Zhejiang University, and University of Science and Technology of China.

And our team focuses on the design of language features in resource-constrained scenarios. Due to

the limited energy and resources of our team, DeepLang does not have any commercialization

capability at this stage.

https://deeplang.org/
https://github.com/deeplang-org/deeplang

Blue Book on Programming Languages in China 2024

24

Example of DeepLang's ADT feature:

// Some top-level declarations

type Shape [

 Rectangle(width : U32, height : U32),

 Circle(radius : U32),

 Nothing

]

type ColoredPoint {

 as position : Point,

 color : Color

}

fun main (x: Char) {

 // Some more top-level declarations

 let tsr: F64 = 2.72;

 let shape: Shape = Circle(12);

 let point: Point = ColoredPoint {

 position : mut a,

 color : ColoredPoint {

 position : itmakesnosense,

 color : butsyntacticallycorrect

 }

 };

}

Blue Book on Programming Languages in China 2024

25

Examples of DeepLang's interface feature:

Examples of DeepLang's Pattern Matching Feature:

interface Foo {

 fun foo(x: Int, y: Int) -> ();

 fun bar(x: Int, y: Int)

 -> Bool;

}

interface Bar extends Foo, Bar {

 fun foo(x: Int, y: Int);

 fun bar(x: Int, y: Int)

 -> Bool;

}

impl Foo for Baz {

 fun foo(x: Int, y: Int) {

 print("bla");

 }

}

type Duck [BaseDuck]

impl Quack for Duck {

 fun quack() -> () {

 print("quaaaack");

 }

}

type Bird [BaseBird]

impl Quack for Bird {

 fun quack() -> () {

 print("bird quaaaack");

 }

}

fun sound (animal: Quack) -> () {

 animal.quack();

}

fun main() -> () {

 let duck: Duck = Duck();

 let bird: Bird = Bird();

 // type checking pass

 sound(duck); // quaaaak

 sound(bird); // bird quaaaak

}

fun main() {

 match(x) {

 _ => { return 0; }

 a : Bool => { return 1; }

 Nothing() => { return 2; }

 Some(Any(y)) => { return 3; }

 () => { return 4; }

 mut a => { return 5; }

 (a, b: Bool, (c, d), e: Char): (F32, Bool, (I32, I32), Char)

 =>{ return 6; }

 7 => { return 7; }

 Point { x : (7: I32), y : Point { x : _ } } => { return 8; }

 Point { x : 7, y : Point { x : _ } } : Point as p

 => { return 9; }

 }

}

Blue Book on Programming Languages in China 2024

26

3.6 GödelScript

Project Tags Language, Free, Opensource (Apache2.0), DSL, Accepting Contribution

Language Tags Domain Specific Language, Declarative Language

Tool Tags General, Source Code Generation, Interpreter

Application Areas Industry Applications(Code Static Analysis, Database)

Homepage https://github.com/codefuse-ai/CodeFuse-Query/blob/main/godel-

script/README.md

Repository https://github.com/codefuse-ai/CodeFuse-Query/tree/main/godel-script

3.6.1 Introduction

GödelScript was designed by the original Ant Group CodeInsight team: Chen Xinyu, Fan

Gang, Fu Jinjian, Liang Yinan, Li Haokun, Li Shijie, Shi Qingkai, Wang Wenyang, Xiao Ling,

Zhou Jinguo, and Zhen Yi (in alphabetical order).

The "hello world" code in GödelScript is as follows:

@output

pub fn hello(greeting: string) -> bool {

 return greeting = "hello world!"

}

GödelScript is CodeQuery's domain-specific language (DSL) for querying and data processing.

The underlying engine is Soufflé Datalog. GödelScript uses a Rust-like syntax that provides strict

type-checking, fast and easy type derivation, and smart and friendly error messages to get you

started.

The main application scenarios for the GödelScript compiler as follow:

⚫ User-oriented writing of simple or complex queries, providing a more convenient way

to write queries and improving the efficiency of query writing.

⚫ provides strict type checking and type derivation, giving smarter code modification

hints.

https://github.com/codefuse-ai/CodeFuse-Query/blob/main/godel-script/README.md
https://github.com/codefuse-ai/CodeFuse-Query/blob/main/godel-script/README.md
https://github.com/codefuse-ai/CodeFuse-Query/tree/main/godel-script

Blue Book on Programming Languages in China 2024

27

⚫ provides strict ungrounded detection to avoid triggering the Soufflé Ungrounded Error;

⚫ Language Server and IDE Extension.

Since it is a DSL (Domain Specific Language) based on Datalog, the language offers a number

of Datalog-specific features such as:

// create schema Person

schema Person {

 name: string,

 age: int,

}

impl Person {

 // define universal set of Person in special method __all__

 pub fn __all__() -> *Person {

 yield Person { name: "John", age: 18 };

}

 pub fn getName(self) -> string {

 return self.name;

}

 pub fn getAge(self) -> int {

 return self.age;

 }

}

// create schema Student extends Person

// all methods except __all__ are inherited

schema Student extends Person {}

impl Student {

 pub fn __all__() -> *Student {

 yield Student { name: "Johnson", age: 18 };

 }

 // getName inherited, also can be overridden

 // getAge inherited, also can be overridden

 pub fn getAge(self) -> string {

 return "age: " + (self.age + 1).to_string();

 }

}

And the function to get the query result can be written as:

@output

pub fn student_name(name: string) -> bool {

Blue Book on Programming Languages in China 2024

28

 for (stu in Student()) {

 return name = stu.getName();

 }

}

Or use SQL-like syntax:

query student_name from

 stu in Student()

select name = std.getName()

Blue Book on Programming Languages in China 2024

29

3.7 HVML

Project Tags Language, Free, Opensource(Multiple License), General, Accepting

Contribution

Language Tags General

Tool Tags General, Runtime Environment

Application Areas General

Homepage https://hvml.fmsoft.cn/

Repository https://github.com/HVML

3.7.1 Introduction

HVML stands for Hybrid Virtual Markup Language. It organizes the presentation of code by

means of a markup language; Virtual means that the markup language becomes an abstracted virtual

markup language by giving it programming power; Hybrid means hybrid, which is able to organize

different languages or programs by means of a glue.

The HVML programming language made the first draft specification publicly available in July

2020; development of the HVML Interpreter began in July 2021; on 30 May 2022, a preliminary

version of the HVML graphical renderer, xGUI Pro, was completed; on 3 July 2022, the HVML 1.0

Interpreter PurC, the renderer xGUI Pro stabilized, and we made public all HVML-related source

code repositories (or packages); in December 2023, the development of the HVML renderer xGUI

was initiated. xGUI will use a self-developed rendering engine, and will be made public in

December 2024.

The basic design goal of HVML is to rapidly develop GUI applications using modern web

front-end technologies (HTML/SVG, DOM, CSS, etc.) in an existing native runtime constructed in

programming languages such as C/C++, Python, etc. without the need for additional browsers or

JavaScript engines.

Descriptiveness is a feature of HVML. Descriptive language not only makes it easier for

developers to understand and write code, it is also suitable for AI programs for learning and Code

Generation. The "hello world" code in HVML is as follows:

<!--

 $SYS.locale returns the current system locale such as `en_US` or

`zh_CN`

 $STR.substr returns a substring of the given string.

-->

https://hvml.fmsoft.cn/
https://github.com/HVML

Blue Book on Programming Languages in China 2024

30

<hvml target="html" lang="$STR.substr($SYS.locale, 0, 2)">

 $STREAM.stdout.writelines('Start of `Hello, world!`')

 <body>

 <!-- 'test' element checks whether the system locale starts with

`zh` -->

 <test with = $STR.starts_with($SYS.locale, 'zh') >

 <h1>我的第一个 HVML 程序</h1>

 <p>世界，您好！</p>

 <!-- If the system locale does not start with `zh` -->

 <differ>

 <h1>My First HVML Program</h1>

 <p>Hello, world!</p>

 </differ>

 </test>

</body>

 $STREAM.stdout.writelines('End of `Hello, world!`')

</hvml>

HVML makes it easy to interact with other programs, for example, with the high-precision

calculator bc for a graphical interface version of the high-precision calculator.

Fig. 3.7-1

As well as the ability to embed python code, data interaction with python programs, processing

Blue Book on Programming Languages in China 2024

31

and displaying:

Fig. 3.7-2

As a markup language, the introduction of markup symbols results in a higher number of code

characters than in other languages, but the benefit is that the organization of the code appears clearer.

This is because another of its design goals is to develop programs with the help of automated

graphical low-code development tools, and the clear organization also facilitates access to AI

applications.

Blue Book on Programming Languages in China 2024

32

3.8 Goldfish Scheme

Project Tags Language, Free, Opensource(Apache2.0),General, Accepting Contribution

Language Tags General, Functional Language

Tool Tags Interpreter

Application Areas Applied Computing(Education, scientific research)

Homepage https://gitee.com/LiiiLabs/goldfish

Repository https://gitee.com/LiiiLabs/goldfish

3.8.1 Introduction

Goldfish Scheme is a Scheme Interpreter with the following features:

⚫ Compatible with R7RS-small Standard

⚫ provides a Python-like standard library.

⚫ Small and fast

Goldfish Scheme was designed with the goal of making Scheme as easy to use and practical

as Python.

Goldfish Scheme is an application scenario driven programming language project. As the S7

Scheme used in Mogan STEM Suite does not meet the long-term development of the Mogan STEM

Suite, we initiated the Goldfish Scheme project to meet the long-term maintenance of the 76,000

lines of historical Scheme code built into the Mogan, and in addition, plug-ins in the Mogan that are

implemented in the Python language, such as the Gnuplot plug-in, we have switched from the

Python implementation to the Goldfish Scheme implementation.

Goldfish Scheme is implemented using a Literate Programming approach. We believe that: in

the era of LLM, the traditional code-centric programming paradigm will switch to the document-

centric Literate Programming paradigm, and the threshold of programming will continue to decrease.

Literate Programming as a time-honored programming paradigm will experience a renaissance in

the era of LLM.

The documentation for Goldfish Scheme is Chinese-language first, as the originator is a native

Chinese speaker. Community communication other than documentation, such as code submission

information, code merge request titles and content, and community developers' Lark Suite groups

are encouraged to be in English.

https://gitee.com/LiiiLabs/goldfish
https://gitee.com/LiiiLabs/goldfish

Blue Book on Programming Languages in China 2024

33

3.9 KCL

Project Tags Language, Free, Opensource (Apache2.0), DSL, Accepting Contribution

Language Tags Domain Specific Language, Declarative Language

Tool Tags General

Application Areas Applied Computing(Cloud Native, Data Engineering, Platform

Engineering, etc.)

Homepage https://kcl-lang.io/

Repository https://github.com/kcl-lang/kcl

3.9.1 Introduction

KCL is an opensource constraint-based recording and function language. KCL improves the

writing of a large number of complex configurations such as cloud-native scenarios through proven

programming language techniques and practices, and is committed to building better modularity,

extensibility, and stability around configurations, simpler logic writing, as well as faster automated

integrations and good ecological extensibility.

Since it was made available in 2022, it has been adopted and put into products used by many

corporate entities and individuals around the world, and in September 2023 it was officially donated

to the CNCF Foundation.

KCL can be applied in the fields as follow:

⚫ Generate static configuration data such as JSON, YAML, etc., or integrate with existing

data;

⚫ Modelling of configuration data using schema and reduction of sample files in

configuration data;

⚫ Define schema with rule constraints for configuration data and automate data validation;

⚫ Organize, simplify, unify and manage large configurations without side effects through a

gradient automation program;

https://kcl-lang.io/
https://github.com/kcl-lang/kcl

Blue Book on Programming Languages in China 2024

34

⚫ Scalable management of large configurations by writing configuration data in chunks.

Fig. 3.9-1

Blue Book on Programming Languages in China 2024

35

3.10 Koral

Project Tags Language, Free, Opensource (MIT), General, Accepting Contribution

Language Tags General

Tool Tags General

Application Areas General

Repository https://github.com/kulics/koral

3.10.1 Introduction

The Koral language is an opensource programming language for application domains. It is

statically typed, memory-hosted, and multi-paradigm. At this stage, the main goal of the Koral

language is to explore type systems and syntax design, and it does not yet have any commercial

capabilities or promise any stability.

The Koral language is currently experimenting with a few more interesting designs:

⚫ Generic syntax by case-sensitivity;

⚫ Expression structure syntax based on semicolon and block distinctions;

⚫ Parameterizable variable type qualifiers.

Example1:

type Pair(T1 Any, T2 Any)(left T1, right T2);

let main() = {

 lef a1 Pair(Int, Int) = Pair(1, 2);

 ## a1.left is Int, a1.right is Int

 lef a2 Pair(Bool, Bool) = Pair(true, false);

 ## a2.left is Bool, a2.right is Bool

 lef a3 Pair(Int, String) = Pair(1, "a");

 ## a3.left is Int, a3.right is String

}

Example 2:

let main() = {

 if true or f() then {

 ..

 }

 0

}

https://github.com/kulics/koral

Blue Book on Programming Languages in China 2024

36

Example 3:

type mut Point(x Int, y Int);

let main() = {

 let a mut Point = mut Point(64, 128);

 let b Point = a; ## ok

 printLine(a.x); ## 64

 printLine(b.x); ## 64

 a.x = 128;

 printLine(a.x); ## 128

 printLine(b.x); ## 128

 b.x = 256; ## error

}

Blue Book on Programming Languages in China 2024

37

3.11 Losu

Project Tags Language, Free, Opensource (MIT), General, Accepting Contribution

Language Tags General

Tool Tags Interpreter, Runtime Environment

Application Areas General, Industry Application

Homepage https://losu.tech

Repository https://gitee.com/chen-chaochen/lpk

3.11.1 Introduction

Losu (Losu: Language of System Units, also known as Easylosu, Losuscript) is an ultra-

lightweight cross-platform scripting language designed for low-resource device control and light

business development in IoT scenarios, with a minimum resource requirement of only RAM ≥

4KB and code space ≥ 32 KB, aiming to provide It is designed to provide lightweight and

dynamic scripting capabilities to improve project flexibility, scalability and customization.

Losu is an innovative programming language with a clean, efficient and reliable design and

implementation:

⚫ The main syntax of Losu is in a Python-like style, with simple rules that make it quick

to get started:

HelloWorld for Losu-Language

def sayHello(msg):

print(msg)

var s= "Hello World!"

sayHello(s)

https://losu.tech/
https://gitee.com/chen-chaochen/lpk

Blue Book on Programming Languages in China 2024

38

⚫ Losu supports native support for JSON format, efficient data exchange and configuration

experience:

json support

var menu = {

"menu": {

"id": "file",

"value": "File",

"рорир": [

{ "value": "New", "onclick": "CreateNewDoc()" },

{ "value": "Open", "onclick": "OpenDoc()" },

{ "value": "Close", "onclick": "CloseDoc()"},

{ "value": "Rm", "onclick": "RmDoc()"},

{ "value": "Move", "onclick": "MoveDoc()"}

]

}

}

⚫ Losu supports multi-paradigm programming, advanced features such as closures, higher-

order functions, duck types, operator overloading:

closure

def outer_func(val):

return def():

print(val)

var f = outer_func(0)

f()

⚫ Losu has good concurrent ability: Losu abandoned the traditional GIL program, their own

design and implementation of the C (concatenation) / T (thread) / P (process) three-level

scheduling model. Losu concatenation is a native data structure, can be used in a bare-

metal environment:

coroutine

import 'math'

def task(fname, f):

for i in 1,5:

print(fname, ':', i, '=', f(i))

yield

var t1 = async(task, 't1', sqrt)

var t2 = async(task, 't2', pow)

while await (t1,t2):

pass

Blue Book on Programming Languages in China 2024

39

Losu has already released the Minimum Viable Product (MVP) in June 2023, which

implements a complete syntax design, compiler, virtual machine, core library, extension library, and

implements tools such as package manager and Playground based on itself, initially becoming an

emerging programming language with practicality. At the same time, Losu is expected to release the

first Minimum Marketable Product (MMP) with corresponding SDK components in early 2025.

Blue Book on Programming Languages in China 2024

40

3.12 MoonBit

Project Tags Language, Free, Opensource, General, Accepting Contribution

Language Tags General

Tool Tags General

Application Areas General

Homepage https://www.moonbitlang.cn

Repository https://github.com/moonbitlang/core

3.12.1 Introduction

MoonBit is a programming language with a syntax similar to Rust, having GC and coming

with modern toolchains and multi-backends:

fn main {

 println("Hello World")

}

Main advantages:

⚫ Excellent compilation and build speed.

⚫ Simple and practical data-oriented language design.

⚫ Multi-backends: including WebAssembly, WebAssembly with GC, JavaScript and C.

⚫ Generated WebAssembly is small in size and fast in execution; generated C code is

efficient.

Features:

⚫ Cloud-native development: MoonBit comes with a cloud-native IDE, which has features

for modern IDEs and enables developing, executing, testing, and debugging in browsers

without any backends.

⚫ Overall design: MoonBit is designed with the whole toolchain in mind, including

https://www.moonbitlang.cn/
https://github.com/moonbitlang/core

Blue Book on Programming Languages in China 2024

41

components such as IDE, compiler, and language server, as well as processes such as

developing, testing, debugging, and publishing.

⚫ AI-oriented design: MoonBit is designed to cooperate better with AI, having a language

design that allows better code generation. All the functions and methods are defined at

top-level with complete type declaration and structural traits are used, such as:

pub(open) trait Animal {

 speak(Self) -> Unit

}

struct Dog { }

// implements Animal

pub fn speak(self : Dog) -> Unit {

 println("Bark")

}

let animals : Array[Animal] = [Dog::{}]

⚫ Developer-oriented design: MoonBit support JSON grammar, like this example:

let data : Json = {

 "object" : { "key": 1, "value" : "v" },

 "array" : [1, true]

}

Project Showcase:

⚫ Developing a game using MoonBit and Wasm4, running in a browser and ESP-C6

microcontroller:

Blue Book on Programming Languages in China 2024

42

Fig. 3.12-1

⚫ Web applications developed with MoonBit:

Fig. 3.12-2

Blue Book on Programming Languages in China 2024

43

3.13 Nasal-Interpreter

Project Tags Tool, Free, Opensource (GPLv2), General, Accepting Contribution

Tool Tags Interpreter

Application Areas General, Industry Application

Homepage https://www.fgprc.org.cn/nasal_interpreter.html

Repository https://github.com/ValKmjolnir/Nasal-Interpreter

3.13.1 Introduction

Nasal is a scripting language with a syntax similar to ECMAscript, designed by Andy Ross,

and later introduced into the famous opensource flight simulator FlightGear as a scripting language

for the development of the FlightGear model. The "hello world" code in Nasal is as follows:

print("hello world!");

Since debugging in FlightGear is inconvenient using the embedded Nasal console window, just

to check for syntax errors you have to spend a lot of time opening the software and waiting for it to

load before debugging.

Thus, a brand new Nasal Interpreter was born. The original purpose of the project was to help

developers check for syntax errors and even runtime errors. In recent iterations, Nasal-Interpreter

also supports REPL Interpreter, cross-platform subprocesses, and more detailed error traceback

information.

Nasal's base datatypes are also very simple, and complex datatypes can be realized by

combinations of the base types:

var this_is_number = 0.0;

var this_is_string = "i am string";

var this_is_vector = [0, "i am vector", ["another vector"]];

var this_is_hash = {

 field_name: "field_value",

 parents: [{}]

https://www.fgprc.org.cn/nasal_interpreter.html
https://github.com/ValKmjolnir/Nasal-Interpreter

Blue Book on Programming Languages in China 2024

44

};

Nasal's functions are actually Lambda's that can be passed as data:

var this_is_function = func(a, b) {

 return a + b;

}

var hash = {

 f: this_is_function,

 example: func(a, b) {

 # `me` acts like `this` in other languages

 return me.f(a, b);

 }

};

print(hash.f(1, 2), "\n"); # expect 3

print(hash.example(2, 4), "\n"); # expect 6

Nasal uses a rather unusual mechanism to simulate inheritance:

var parent = {

 prt: func { print("in parent function\n"); }

}

var child = {

 parents: [parent]

}

child.prt(); # expect "in parent function\n"

Nasal also uses two special loop syntaxes to facilitate scripts:

forindex(var i; [0, 0, 0]) {

 print(i); # expect 012

}

foreach(var i; ['foo', 'bar']) {

 print(i, " "); # expect foo bar

}

Blue Book on Programming Languages in China 2024

45

3.14 NASL

Project Tags Language, Commercial (No time limit for free trail), Closed Source, DSL,

Not Accepting Contribution

Language Tags Domain Specific Language, Extensible Languages

Tool Tags Source Code Generation, Incremental Compiler

Application Areas Industry Application (Low-Code Development Platform)

Homepage https://nasl.codewave.163.com/

3.14.1 Introduction

NASL, full name Next Application Specific Language, is a domain-specific language used to

describe Web applications in NetEase CodeWave intelligent development platform

(https://sf.163.com/product/lcap?productId=neteasecloud). It contains two main parts: the basic

language and a collection of sub-languages for specific areas of Web applications (e.g., data sources,

data queries, pages, processes, permissions, etc.) The most important feature of NASL is the use of

the visual editor of the CodeWave Intelligent Development Platform to unify the design of all

aspects of the Web application's pages, business logic, data, processes, and so on, supplemented by

static checking, full-stack debugging, AIGC Code Generation, multi-person collaboration and other

functions:

Fig. 3.14-1

https://nasl.codewave.163.com/

Blue Book on Programming Languages in China 2024

46

For building web applications, NASL and its supporting facilities come out of the box with a

low learning threshold and low development costs: developers do not need to learn multiple

frameworks and languages (e.g., TypeScript and Vue for the front-end, and Java and Spring for the

back-end), and they do not need to transfer data between them.

The overall architecture of NASL and its supporting facilities is illustrated below:

Fig. 3.14-2

During 2024, the majority of features are added to the IDE side. On the NASL side, features

such as new textual syntax, exception handling, break and continue statements are added.

The following describes the base language, sub-languages, and supporting facilities.

Base language: The NASL base language incorporates language features common to object-

oriented, functional, and other programming paradigms, and has the same expressive power as most

general-purpose computer programming languages:

⚫ A static type system that supports commonly used primitive, composite, collection, and

meta data types.

⚫ Union types and match expressions.

⚫ Logic (function) definitions, which can use common control flows such as if, while,

foreach and lambda expressions.

⚫ Namespace, modules, and dependencies.provides a standard library of commonly used

built-in functions.

NASL uses visualization to simplify complex language features, greatly reducing the learning

Blue Book on Programming Languages in China 2024

47

threshold for users and matching the user profile of low-code groups.

Sub-languages: NASL sublanguages are DSLs that build on top of the base language by

incorporating key features of traditional programming languages and frameworks for various

subfields of Web applications:

⚫ The Data Definition sublanguage, which is used to express concepts related to databases,

tables, fields and indexes.

⚫ Data query sublanguage, which is for expressing data query scenarios such as filtering,

sorting, paging and aggregation.

⚫ The page language, which is mainly used to express scenarios such as page layout, page

interaction and page style.

⚫ The process sublanguage, which is designed for expressing concepts related to the process

domain such as manual tasks, automated tasks, exclusion gateways, etc.

The sub-languages are not independent of each other or cobbled together, but rather built on

top of the base language and are more unified, explained as follows:

⚫ Front-end, server-side, and entities all use a unified type definition.

⚫ Front-end page logic, server-side logic, process logic can use unified expressions,

statements, built-in functions standard library.

⚫ Server-side logics called from front-end, interfaces called from logics, page jumping from

process and other functions are all abstracted away from the underlying details, the user

is senseless.

Complementary Facilities:

⚫ Language Server: Includes type detection, type inference, jumping to definition, auto-

completion and other capabilities to reduce the probability of programming errors and

improve programming efficiency.

⚫ Debugger: Includes breakpoint, step into, step over, resume, evaluate etc.

⚫ Code Repository: Used for real-time storage of NASL code generated by users’ building

applications, and meets the characteristics of high-performance, high-availability, high-

reliability and so on.

⚫ Generator: NASL semantic compiler. Low-code platforms use Generator to compile

NASL into general-purpose languages such as Java, JavaScript, etc., and then run NASL

on the computer using the underlying general-purpose language runtime facilities such as

the JVM.

Blue Book on Programming Languages in China 2024

48

⚫ Upgrader: Used for compatibility issues that arise during the development of the NASL

language.

Other aspects such as libraries and dependencies, compiler architecture, etc. are detailed in the

Lightship low-code technology white paper:

http://nasl.codewave.163.com/%E6%8A%80%E6%9C%AF%E7%99%BD%E7%9A%AE%

E4%B9%A6V1.0-1118.pdf

http://nasl.codewave.163.com/%E6%8A%80%E6%9C%AF%E7%99%BD%E7%9A%AE%E4%B9%A6V1.0-1118.pdf
http://nasl.codewave.163.com/%E6%8A%80%E6%9C%AF%E7%99%BD%E7%9A%AE%E4%B9%A6V1.0-1118.pdf

Blue Book on Programming Languages in China 2024

49

3.15 PikaPython

Project Tags Tool, Free, Opensource (MIT), General, Accepting Contribution

Tool Tags Interpreter, Runtime Environment

Application Areas Applied Computing

Homepage https://pikapython.com

Repository https://gitee.com/Lyon1998/pikapython

3.15.1 Introduction

PikaPython is a completely rewritten ultra-lightweight python engine. It has no zero

dependencies and configuration. And it is extremely easy to deploy and extend , with a large

number of Chinese documents and video materials . The project architecture is shown below:

https://pikapython.com/
https://gitee.com/Lyon1998/pikapython

Blue Book on Programming Languages in China 2024

50

Fig. 3.15-1

⚫ Running Environment: Support running on naked machines which configures are RAM

≥ 4kB and FLASH ≥ 64kB, such as stm32g030, stm32f103c8t6, esp8266 and so

on;

⚫ Development Environment: Support Keil, IAR, rt-thread studio, segger embedded

Blue Book on Programming Languages in China 2024

51

studio IDE; Support CMake, makeFile, Scons and other build tools; No dependency, no

configuration, out-of-the-box and easy to integrate into existing C projects; Easy to

expand C native functions; Support Cross-platform and kernel development in linux

environment; Support serial port to download Python scripts, such as the Figure below:

Fig. 3.15-2

⚫ Syntax Features: A subset of the python3 standard syntax; Supports python class and

method definitions at compile time, Full support for encapsulation, inheritance,

polymorphism, and module functionality based on the Pika pre-compiler; Supports

python method calls, variable definitions, object construction, object release, and

control flow (if\while) at runtime based on the Pika runtime kernel;

Blue Book on Programming Languages in China 2024

52

⚫ Source Code Specification: Focus on source code readability, naming conventions,

uniform standards, no macros, no global variables and full unit test based on googletest.

Blue Book on Programming Languages in China 2024

53

3.16 Qing

Project Tags Language, Free, Opensource (MulanPSL V2.0), General, Accepting

Contribution

Language Tags General-Purpose Programming Language

Tool Tags Interpreter, IDE

Application Areas General

Homepage https://qingyuyan.cn/

Repository https://gitee.com/NjinN/Qing

3.16.1 Introduction

Qing is a programming language built entirely on Chinese language idioms and is aimed at

teenagers, children and non-professionals.

The main design components are as follows:

⚫ The language core references the Lisp language. Lisp is known as a language for

implementing programming languages, and its minimalist language core is very easy to

implement. This makes the core language implementation of Cyan very simple, and

makes it easy for opensource developers to participate in and contribute to the

development of the language core.

⚫ Syntactically references the JavaScript language. The JS programming language syntax

is very simple, and its original design is also Lisp core, so it is very easy to implement.

For users, there are fewer concepts to master and can be easily learnt and used.

⚫ It is developed in C# and runs on the .Net platform can be said to be one of the most open,

cross-platform compatibility of the best programming language, and itself has a good

language ecology can be borrowed. Net platform can make the green language with good

cross-platform compatibility, and at the same time can easily extend its functionality.

⚫ currently uses dynamic link library DLL's to extend functionality. Cyan provides a simple

way to encapsulate C# native functionality. By referring to sample projects, developers

https://qingyuyan.cn/
https://gitee.com/NjinN/Qing

Blue Book on Programming Languages in China 2024

54

can encapsulate the required functionality into a single DLL file, which can be easily

shared and used.

Qing provides Interpreter, Editor, Android APP, while supporting Windows, Linux, OSX

compatible, support GUI graphical interface programming.

Simple clock example:

Fig. 3.16-1

AI Picture Classification:

Fig. 3.16-2

Blue Book on Programming Languages in China 2024

55

Running Large Language Model:

Fig. 3.16-3

Blue Book on Programming Languages in China 2024

56

3.17 RoarLang

Project Tags Language, Free, Opensource(Apache2.0),General, Accepting Contribution

Language Tags General, Concurrent Programming Language, Object Oriented Language

Tool Tags General, Interpreter, Source Code Generation, Runtime Environment

Application Areas General

Repository https://gitee.com/openblock/openblock

3.17.1 Introduction

RoarLang is an open source, state-machine oriented, graphical, cross-platform, IDE-all-in-one

scripting programming language. RoarLang is a fully business-oriented programming language and

used to build a variety of business systems. It is not responsible for the implementation of the

underlying technology, only responsible for the description of the business logic. IDE natively

provides full-scenario capabilities, you can connect the entire line of business in a project.

Fig. 3.17-1

RoarLang’s compiler, interpreter, runtime and IDE are all opensource and freely modified.

RoarLang IDE integrates resource management, static data management and other functions, you

https://gitee.com/openblock/openblock

Blue Book on Programming Languages in China 2024

57

can secondary development to increase the specific field of the system. IDE provides graphical

feedback capabilities and can be convenient for business people to understand the business logic.

Static data can be edited by Excel and compiled into binary files along with the code during

compilation, which reduces storage occupancy and improves operational efficiency. With the

graphical internationalization capability, RoarLang can apply internationalization to all built-in and

local libraries after the code is completed.

RoarLang has been experimentally commercialized in foreign enterprises, party politics,

scientific research, education and other fields. Meanwhile, it has been widely used in the field of

youth programming education, supporting two sessions of the Ministry of Education's National

Primary and Secondary School Whitelist Competition.

Fig. 3.17-2

Compilation and connectivity is written entirely in JavaScript and can be run in a browser or

in Nodejs. The IDE is pure Html5 architecture and has no server-side requirements, any

HTTP/HTTPS server can run it. Users on the business side do not need to configure the environment

or install any software. The IDE is pure Html5 architecture and can be run on any HTTP/HTTPS

server.

RoarLang is a state-machine oriented programming language, different states can listen to

different events , execute different business logic , it can be very convenient to build a variety of

complex business systems . State machines communicate with each other through asynchronous

messages, you can make full use of multi-threaded, multi-process, distributed and other parallel

technologies to achieve high concurrency and high performance.

RoarLang is a strongly typed language with support for custom data structures, and the native

library can support generics. Functions are divided into three binding relationships: function, state

machine behavior, and state behavior. Variables are divided into three scopes: state machine, state,

Blue Book on Programming Languages in China 2024

58

and local.

Fig. 3.17-3

Through the RoarLang VM to interpret the bytecode execution, or bytecode compiled into

other languages, to achieve cross-platform and high-performance operation. At present, we mainly

use VM.mjs to interpret bytecode in JS. Meanwhile, to C.mjs provides the function of compiling

bytecode to C code. As RoarLang uses a lot of asynchronous logic, in can control concurrency and

asynchrony at the technical layer according to the use of scenarios and technology stacks to give

full play to the performance of the hardware, and can also support embedded, server, client, web

page, executables and other operating environments, and can develop applications such as VR,

WeChat applets, Internet of Things and so on. It meets the requirements of Information Technology

Application Innovation and supports Harmony OS.

RoarLang means a doll in the shape of a lion that are suitable to keep on hand to motivate you.

Blue Book on Programming Languages in China 2024

59

3.18 TuLang

Project Tags Language, Free, Opensource(AGPL-3.0), General, Accepting Contribution

Language Tags General, Imperative Language

Tool Tags General Compilation Tool

Application Areas General, Industry Application

Repository https://github.com/tu-lang/tu

3.18.1 Introduction

TuLang is a dynamically compiled programming language designed for general-purpose

scenarios, the project was launched in 2018 and open-sourced in 2022, and has successfully

implemented bootstrapping and is in the trial optimization phase

The language was originally designed out of a realization that existing programming languages

were overly extreme in their pursuit of high performance and security, such as Rust and C++.

Although these languages excel in performance and security, they place a considerable burden on

developers in real-world program development, causing some fatigue.

In contrast, current dynamic languages such as PHP, Python, and JavaScript have high

development efficiency, but their performance is usually poor and they are mainly interpreted, and

their extensibility is somewhat limited. In order to solve these problems, some underlying features

have to be implemented by writing extension libraries for the C language.

The development goal of TuLang is to strike a balance between development efficiency,

performance, and simplicity. In terms of development efficiency, it mainly adopts dynamic syntax,

eliminating the need for cumbersome type annotations and allowing developers to focus on the

implementation of business logic. In terms of performance, we write high-performance libraries

with static syntax to provide a viable solution for high-performance scenarios, and provide

mainstream rich and safe features such as stack coprocessing and multi-threaded GC. simplicity is

another pursuit of the convex language, which is 100% zero-dependency and self-sufficient, with

full-link bootstrap (compilation, assembly, and linking) and no need to rely on external toolchain

https://github.com/tu-lang/tu

Blue Book on Programming Languages in China 2024

60

support. Any amd64 Linux architecture.

Example of dynamic syntax:

Fig. 3.18-1

Example of static syntax.

Fig. 3.18-2

Examples of feature syntax:

Blue Book on Programming Languages in China 2024

61

Fig. 3.18-3

In the coming time, the development team will focus on the following directions:

⚫ Improving the Multi-threaded Future Concurrent Management Framework;

⚫ Optimizing Multithreaded GC Performance and Stability for Runtime;

⚫ Enrichment package dependency management tools, documentation manuals;

⚫ Enterprise real-world application projects;

⚫ Designing Business Frameworks That Work.

TuLang welcomes programming language enthusiasts to build, polish, and work together to

develop a language that belongs to us, the developers, ourselves.

Blue Book on Programming Languages in China 2024

62

3.19 Wa

Project Tags Language, Free, Opensource(AGPL-3.0), General, Accepting Contribution

Language Tags General, Imperative Language

Tool Tags General

Application Areas General, Computer Graphics, Modeling and Simulation

Homepage https://wa-lang.org/

Repository https://github.com/wa-lang/wa, https://gitcode.com/wa-lang/wa

3.19.1 Introduction

Wa (Chinese name "凹", which pronounced "Wa") is a programming language designed for

WebAssembly (abbreviated Wasm). In terms of pronunciation, "Wa" is the first syllable of Wasm,

in terms of shape, "凹" resembles the Wasm icon (a square with an opening missing at the top). The

name of the Wa is inspired by the coincidence of this unique hieroglyphic character's double

similarity in shape and pronunciation.

Wa is an opensource project maintained by Wuhan WaYuYan Technology Co., Ltd., its goal is

to provide a clean, reliable, easy-to-use, strongly typed, compiled general-purpose programming

language for high-performance web applications, Wa is currently in the engineering trial phase. The

important milestones of it are as follows:

⚫ In 2019, the project was launched;

⚫ In July 2022, officially open sourced;

⚫ In August 2023, the minimum viable version (MVP) was released;

⚫ In November 2024, all syntactic features were implemented.

Easy-to-use is our design focus - the use of automatic memory management, strings as basic

types, etc., all reflect this point. Wa compiler is a single-file executable program with built-in

scaffolding that allows you to create a Wasm program in just three steps. In addition, Wa provides

an online playground at https://wa-lang.org/playground, where you can write, compile, run and test

https://wa-lang.org/
https://github.com/wa-lang/wa
https://gitcode.com/wa-lang/wa
https://wa-lang.org/playground

Blue Book on Programming Languages in China 2024

63

Wa code in the web page:

Fig. 3.19-1

Although Wa is still in its early stages, it has already shown strong performance. The

Nintendo FC emulator developed with it: https://wa-lang.org/nes can run various FC-ROMs

smoothly (in comparison, using the same emulation method, the performance of the FC emulator

developed by Python is only 1% of the real machine):

Fig. 3.19-2

Application areas of Wa include XR, games, industrial design, geospatial information system,

and other computationally intensive web applications. The project team is developing graphics

and image support libraries for these applications:

https://wa-lang.org/nes

Blue Book on Programming Languages in China 2024

64

Fig. 3.19-3

From 2019 to 2023, the first five-year plan of the Wa project, the development team has

basically achieved the goal of "usability"; for the second five-year plan, our goal is "easy to use".

As the first year of the second five-year plan, the progress of the project in 2024 is mainly

reflected in the following aspects:

⚫ Added function overloading, operator overloading, embed, map, defer, and complex

number support to realize all syntax features;

⚫ Developed a built-in wat to wasm module to realize the full self-development of the

compiler backend;

⚫ Provided support for frameworks such as p5, wasm4, and Arduino Nano 33;

⚫ Fixed a lot of bugs.

In the coming time, we will focus on the following directions:

⚫ Functional base library and framework development;

⚫ Backend and runtime reconstruction, performance improvement;

⚫ Practical project implementation;

⚫ Tool chain, manual, and scaffolding optimization.

Wa is the result of community cooperation. The compiler is written in Golang and the

standard library is written in Wa. Programming language enthusiasts are always welcome to gather

around and build together!

Blue Book on Programming Languages in China 2024

65

3.20 XLang

Project Tags Language, Free, Opensource(AGPL-3.0), General, Accepting Contribution

Language Tags General (Scripting Language), Imperative Language, Functional Language

, Extensible Language

Tool Tags Interpreter, Source Code Generation

Application Areas General, Industry Applications

Homepage https://nop-platform.github.io/projects/nop-entropy/docs/dev-guide/xlang/

Repository https://github.com/entropy-cloud/nop-entropy

3.20.1 Introduction

XLang is a scripting language that combines XML tag syntax and JavaScript syntax. It was

designed by canonical. The XLang language is one of the underlying technologies of the Nop low-

code platform and is the world's first programming language with built-in support for Delta merge

operators from reversible computation theory. XLang’s hello world is as follow:

<c:log info="hello world" />

The Nop platform adopts the language-oriented programming paradigm (Language Oriented

Programming). When developing applications, it does not directly use general-purpose

programming languages (such as Java, C#) for development, but first defines a domain-specific

language (DSL), and then uses the DSL to express business. In order to quickly develop and expand

the DSL language, we need a meta-model language that can define the DSL. syntax structure, as

well as a series of mechanisms to quickly implement the DSL interpreter, syntax-guided translation,

etc. The XLang language XLang includes sub-languages such as the XDef meta-model definition

language, the Xpl template language, the XScript expression language, and the XTransform

structural transformation language. They together form a complete DSL development infrastructure.

By adding a simple XDef meta-model definition, we can automatically obtain the corresponding

DSL parser, validator, IDE plugin, debugging tool, etc., and automatically add general language

features such as module decomposition, delta customization, and meta-programming to the DSL

domain language.

https://nop-platform.github.io/projects/nop-entropy/docs/dev-guide/xlang/
https://github.com/entropy-cloud/nop-entropy

Blue Book on Programming Languages in China 2024

66

⚫ Defining a new DSL through XDef meta-model definition:

<!--

状态机模型 DSL

@initial 初始状态的 id

@stateProp 实体上的状态属性名

-->

<state-machine initial="!var-name" stateProp="!string"

ignoreUnknownTransition="!boolean=false"

 xdef:name="StateMachineModel" xdef:bean-

package="io.nop.fsm.model"

 x:schema="/nop/schema/xdef.xdef"

xmlns:x="/nop/schema/xdsl.xdef" xmlns:xdef="/nop/schema/xdef.xdef"

>

 ...

 <state id="!var-name" xdef:unique-attr="id" xdef:ref="StateModel"/>

 <!-- 进入状态时触发的监听函数 -->

 <on-entry xdef:value="xpl"/>

 <!-- 离开状态时触发的监听函数 -->

 <on-exit xdef:value="xpl"/>

 <!--

 状态迁移出现异常时触发的监听函数。如果返回 true，则认为异常已经被处理，不对

外抛出异常

 -->

 <handle-error xdef:value="xpl-fn:(err)=>boolean"/>

</state-machine>

⚫ Interweaving of XML and Expression Syntax. XLang does not use JSX syntax to

implement XML-like syntax, but continues to use XML syntax and extends the Template

expression syntax in JavaScript:

let resut = xpl `<my:MyTag a='1' />`

const y = result + 3;

Equivalent to

<my:MyTag a='1' xpl:return="result" />

<c:script>

 const y = result + 3;

</c:script>

The overall structure of XLang strictly complies with the XML format requirements, so it meets

Blue Book on Programming Languages in China 2024

67

the homoiconicity principle first introduced by Lisp language when used as a template language to

generate XML, making it particularly suitable for meta-programming and macro function

implementation.

XLang modifies the parsing format of the Template expression syntax in JavaScript,

recognizing the content between backtick characters as a string to be parsed at compile time, rather

than an Expression list. This allows XLang to use this syntax form to extend support for more DSL

formats, such as introducing a LinQ syntax similar to C#.

const result = linq `select sum(amount) from myList where status >

${status}`

Implementing a parser similar to LinQ syntax is very simple, just define a static function in

Java, marked with @Macro.

 @Description("编译并执行 xpl语言片段，outputMode=none")

 @Macro

 public static Expression xpl(@Name("scope") IXLangCompileScope

scope,

 @Name("expr") CallExpression expr) {

 return TemplateMacroImpls.xpl(scope, expr);

}

⚫ Macro Functions and Compile-Time Execution. XLang supports compile-time meta-

programming, allowing Turing-complete code to be executed at compile time and

dynamically generating new syntax structures to be compiled.

 <!--在编译期解析标签体得到 ValidatorModel, 保存为编译期的变量

validatorModel-->

<c:script><![CDATA[

import io.nop.biz.lib.BizValidatorHelper;

let validatorModel = BizValidatorHelper.parseValidator(slot_default);

// 得到<c:script>对应的抽象语法树

let ast = xpl `

 <c:ast>

 <c:script>

 import io.nop.biz.lib.BizValidatorHelper;

 if(obj == '$scope') obj = $scope;

 BizValidatorHelper.runValidatorModel(validatorModel,obj,svcCtx);

 </c:script>

 </c:ast>

`

// 将抽象语法树中的标识名称替换为编译期解析得到的模型对象。这样在运行期就不需

要动态加载模型并解析

Blue Book on Programming Languages in China 2024

68

return ast.replaceIdentifier("validatorModel",validatorModel);

]]></c:script>

⚫ XDSL's Delta Generation and Merge Mechanism. All DSLs in the Nop platform support

the x-extends delta merge mechanism, which implements the computational pattern

required by reversible computation theory:

> App = Delta x-extends Generator<DSL>

Specifically, all DSLs support x:gen-extends and x:post-extends configuration sections, which

are Generators executed at compile time, using the XPL template language to dynamically generate

model nodes, allowing multiple nodes to be generated at once, and then merged in order, with the

specific merge order defined as follows:

<model x:extends="A,B">

 <x:gen-extends>

 <C/>

 <D/>

 </x:gen-extends>

 <x:post-extends>

 <E/>

 <F/>

</x:post-extends>

</model>

The merge result is:

F x-extends E x-extends model x-extends D

x-extends C x-extends B x-extends A

The current model will overwrite the results of x:gen-extends and x:extends, while x:post-

extends will overwrite the current model.

With the help of x:extends and x:gen-extends, We can effectively implement the decomposition

and combination of DSL. For more details, see https://zhuanlan.zhihu.com/p/612512300.

⚫ Extensible Syntax. Similar to Lisp language, the syntax of XLang can be extended

through macro functions and tag functions. New syntax nodes can be introduced through

<c:lib>, and then structural transformations can be implemented within the node through

macro functions and other mechanisms.

<c:lib from="/nop/core/xlib/biz.xlib" />

<biz:Validator fatalSeverity="100"

 obj="${entity}">

https://zhuanlan.zhihu.com/p/612512300

Blue Book on Programming Languages in China 2024

69

 <check id="checkTransferCode" errorCode="test.not-transfer-code"

 errorDescription="扫入的码不是流转码">

 <eq name="entity.flowMode" value="1"/>

 </check>

</biz:Validator>

<biz:Validator> introduces a DSL for validation. The Validator tag will use the macro function

mechanism to parse the node content at compile time and translate it into an XLang Expression for

execution.

Blue Book on Programming Languages in China 2024

70

Charter 4 About us

PLOC:

The Programming Language Open Community (PLOC) is a professional community of

programming languages and compilers spontaneously formed by Chinese practitioners. The

community is based on the following realities:

⚫ Programming languages and compilers are the real "root technologies" and "industrial

mother machines" of the software industry, but our country has made little progress in

this industry;

⚫ Decision-makers and the industry are beginning to realize the importance of PL

technology;

⚫ There is no regular pattern in the development experience of the widely used

programming languages today;

There are many programming language projects in China, but practitioners are highly dispersed,

no one can give a representative and comprehensive panoramic view, and there is also a lack of

industry voice channels.

Unlike other loose SIGs, PLOC has a clear program and vision, a complete system charter, and

a strict organizational structure. It has a permanent decision-making body (CPLOC) and a

comprehensive service agency (CPLOC Secretariat), and promotes community construction and

activities through professional committees.

"Practitioners supporting each other" is the core concept of PLOC. Programming language

projects have a high threshold for startup, high commercialization difficulty, and the number of

practitioners is relatively small, so communication and mutual support in the industry is especially

important. We hope that through the establishment of this community, we can promote the startup

of more programming language projects (increase the base number), prolong the survival time of

the projects (increase the success factor), and help the development of rooted software in China.

HBSIA:

Hubei Software Industry Association (HBSIA), established in 2000, is a 5A-level social

organization engaged in software research and development as well as information services.

Membership Composition: The association currently has approximately 1,200 official member

Blue Book on Programming Languages in China 2024

71

units, all of which are economic organizations engaged in software and information service research

and development, sales, scientific research, and related fields. The current chairman (legal

representative) is Zeng Jun, the chairman of Fiberhome Telecommunication Technologies Co., Ltd.

Social Recognition: In 2010, it was awarded the title of "National Advanced Social

Organization" by the Ministry of Civil Affairs. In 2017, it received the "National Youth Civilization

Unit" title from the Central Committee of the Communist Youth League of China. In 2012 and 2024,

it was rated as a "5A-level Social Organization" by the Hubei Provincial Department of Civil Affairs.

Service Brand: Over the years, HBSIA has aimed to "strive to be a leading flag in social

organization services, build a first-class national software industry association, and serve the high-

quality development of the software industry." Adhering to professionalization, standardization, and

marketization, with the "Scenario Road Plan" as its long-term vision, the association has established

a service system of "2 Conferences and 10 Platforms," including the Pomegranate Conference,

specialized committees, and platforms for technology supply chains, markets, talents, capital, and

software and information technology solutions. It serves administrative agencies, public institutions,

research institutes, universities, and enterprises in fields related to the digital economy, totaling over

2,500 organizations, with service recipients spread across more than 20 provinces, municipalities

directly under the central government, and autonomous regions nationwide. The association plays

an active role in strengthening party building leadership, assisting government decision-making,

promoting industry self-discipline, improving consultative democracy, cultivating digital talents,

prioritizing employment, developing digital standards, facilitating exchange and cooperation,

empowering enterprise development, and fulfilling public welfare responsibilities. It has been

commended by leaders of the Ministry of Civil Affairs as a "Model for social organizations."

Blue Book on Programming Languages in China 2024

72

Appendix

Language Category:

a. General Programming

Language

b. Parallel Programming

Language

c. Concurrent Programming

Language

d. Distributed Programming

Language

e. Imperative Language f. Object Oriented Language

g. Functional Language h. Constraint and Logic

Language

i. Dataflow Language

j. Extensible Language k. Assembly Language

Tool Category:

a. General Compiler b. Interpreter c. Incremental Compiler

d. Retargetable Compiler e. Just-in-time Compiler f. Dynamic Compiler

g. Translator Writing Systems

and Compiler Generators

h. Source Code Generation i. Runtime Environment

j. Preprocessor k. Parser

Application Area:

a. General Computation b. Theory of Computation c. Mathematics of Computing

d. Networks e. Information System f. Security

g. Machine Learning h. Artificial Intelligence i. Parallel Computing

j. Concurrent Computing k. Distributed Computing l. Modelling and Simulation

m. Computer Graphics n. Applied Computing /

Industry Applications

Blue Book on Programming Languages in China 2024

73

	Copyright
	Charter 1 Preface
	1.1 Background
	1.2 Our Purpose
	1.3 Inclusion Criteria
	1.4 How to submit
	1.5 Project classification

	Charter 2 Summary of 2024
	Charter 3 Project List
	3.1 Auto Lang
	3.1.1 Introduction

	3.2 Aya
	3.2.1 Introduction

	3.3 Calcit
	3.3.1 Introduction

	3.4 CovScript
	3.4.1 Introduction

	3.5 DeepLang
	3.5.1 Introduction

	3.6 GödelScript
	3.6.1 Introduction

	3.7 HVML
	3.7.1 Introduction

	3.8 Goldfish Scheme
	3.8.1 Introduction

	3.9 KCL
	3.9.1 Introduction

	3.10 Koral
	3.10.1 Introduction

	3.11 Losu
	3.11.1 Introduction

	3.12 MoonBit
	3.12.1 Introduction

	3.13 Nasal-Interpreter
	3.13.1 Introduction

	3.14 NASL
	3.14.1 Introduction

	3.15 PikaPython
	3.15.1 Introduction

	3.16 Qing
	3.16.1 Introduction

	3.17 RoarLang
	3.17.1 Introduction

	3.18 TuLang
	3.18.1 Introduction

	3.19 Wa
	3.19.1 Introduction

	3.20 XLang
	3.20.1 Introduction

	Charter 4 About us
	Appendix

